Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaguabis(4,4'-bipyridine)cobalt(II) 2-aminonaphthalene-1-sulfonate hexahydrate

Ming-Jie Wu, Pei-Xia Dai, Xiu-Guang Wang, En-Cui Yang and Xiao-Jun Zhao*

College of Chemistry and Life Sciences, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

Received 14 August 2007; accepted 18 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 13.6.

The title compound, $[Co(C_{10}H_8N_2)_2(H_2O)_4](C_{10}H_8NO_3S)_2$. $6H_2O$, contains a tetraaquabis(4,4'-bipyridine)cobalt(II) cation, two ANS⁻ anions (HANS = 2-aminonaphthalene-1sulfonic acid) and six solvent water molecules. The Co^{II} atom lies on an inversion centre and is coordinated octahedrally by two mutually trans 4,4'-bipyridine molecules bound in a monodentate fashion and by four water molecules in the equatorial plane. The cations and water molecules are arranged into infinite two-dimensional layers by an extensive network of hydrogen bonds. The ANS⁻ anions are trapped between these layers via N-H···O interactions between the amino groups and the solvent and coordinated water molecules. Adjacent layers are stacked via weak π - π interactions between 4,4'-bipyridine molecules [nearest centroid-tocentroid distance 3.662 (0) Å].

Related literature

For details of the role of water molecules in self-assembly processes, see Tajkhorshid et al. (2002). For investigations of water-based clusters assembled by hydrogen bonds, see: Yoshizawa et al. (2005); Sreenivasulu & Vittal (2004).

Experimental

$[Co(C_{10}H_8N_2)_2(H_2O)_4]$ -	a = 12.4737 (14) Å
$(C_{10}H_8NO_3S)_2 \cdot 6H_2O$	b = 18.358 (2) Å
$M_r = 995.93$	c = 10.9196 (13) Å
Monoclinic, $P2_1/c$	$\beta = 114.148 \ (1)^{\circ}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.840, T_{\max} = 0.887$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.109$ S = 1.054021 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1A…O6	0.85	1.87	2.700 (3)	166
$O1 - H1B \cdots O7$	0.85	2.03	2.821 (3)	155
$O2-H2A\cdots N2^{i}$	0.85	1.91	2.756 (3)	174
$O2-H2B\cdots O4^{ii}$	0.85	1.96	2.803 (2)	173
$O2-H2B\cdots S1^{ii}$	0.85	2.93	3.6985 (18)	152
$N3-H3A\cdots O5$	0.86	1.98	2.660 (4)	135
$N3-H3B\cdots O4^{iii}$	0.86	2.15	2.980 (3)	162
$O6-H6A\cdots O5$	0.85	2.35	2.784 (3)	112
$O6-H6B\cdots O3^{iv}$	0.85	1.85	2.684 (3)	167
$O6-H6B\cdots S1^{iv}$	0.85	3.03	3.768 (2)	147
$O7 - H7A \cdots O8$	0.85	2.04	2.881 (5)	172
$O7 - H7B \cdots O5^{iii}$	0.85	2.21	2.953 (4)	145
O8−H8A…O6	0.85	2.27	2.949 (4)	137
$O8-H8B\cdots O7^{v}$	0.85	2.41	2.980 (4)	125
			()	

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z + 1; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y + 1, -z; (v) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL and DIAMOND (Brandenburg & Berndt, 1999).

The authors gratefully acknowledge financial support from the Youth Fund of Tianjin Normal University (grant No. 52LJ71).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2334).

References

- Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2003). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 43, 5769-5772. Tajkhorshid, E., Nollert, P., Jensen, M., Miercke, L. J. W., O'Connell, J., Stroud,
- R. M. & Schulten, K. (2002). Nature (London), 296, 525-530.
- Yoshizawa, M., Kusukawa, T., Kawano, M., Ohhara, T., Tanaka, I., Kurihara, K., Nimura, N. & Fujita, M. (2005). J. Am. Chem. Soc. 127, 2798-2799.

metal-organic compounds

 $\mu = 0.54 \text{ mm}^{-1}$ T = 293 (2) K

 $R_{\rm int} = 0.019$

295 parameters

 $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.29$ e Å⁻³

 $0.32 \times 0.28 \times 0.22 \text{ mm}$

12190 measured reflections 4021 independent reflections

3270 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Cryst. (2007). E63, m2413 [doi:10.1107/S1600536807040913]

Tetraaquabis(4,4'-bipyridine)cobalt(II) 2-aminonaphthalene-1-sulfonate hexahydrate

M.-J. Wu, P.-X. Dai, X.-G. Wang, E.-C. Yang and X.-J. Zhao

Comment

The asymmetric unit of the title complex (Fig. 1) contains half of a Co^{II} center, one monodentate 4,4'-bipyridine ligand, one free ANS⁻ anion, two coordinated water (O1 and O2) and three lattice water molecules (O6, O7 and O8). The Co^{II} atom, which lies on an inversion center, is six-coordinated to four oxygen atoms from four coordinated water molecules and two nitrogen atoms from two 4,4'-bipyridine ligands, exhibiting a nearly ideal octahedral coordination geometry. The isolated cations are connected to three lattice water molecules by extensive O—H···O hydrogen bonds interactions to generate a two-dimensional Co^{II}–H₂O layer (Fig. 2 and Table 1). And these adjacent two-dimensional layers are further stacked together by weak π – π interactions between interlayer 4,4'-bipy, exhibiting three-dimensional interdigitated supramoleuclar architectures. The nearest centroid-to-centroid distance is 3.662 (0) Å. Free ANS anions are tightly encapsulated in the channels of the three-dimensional packing structure *via* N—H···O interactions between amino groups and the lattice as well as coordinated water molecules (Fig. 3 and Table 2).

Experimental

The title complex was synthesized by dissolving $Co(CH_3COO)_24H_2O$ (99.6 mg, 0.4 mmol), 4,4'-bipyridine (38.4 mg, 0.2 mmol), HANS (89.3 mg, 0.4 mmol), NaOH (24 mg, 0.6 mmol), and H₂O (15 ml) in a 23 ml Teflon lined autoclave under autogenous pressure at 140°C for 2 days. The mixture was slowly cooled to room temperature at a rate of 5 K h⁻¹, pale-red block-shaped crystals suitable for X-ray analysis were obtained in 33% yield. Analysis calculated for C₄₀H₅₂CoN₆O₁₆S₂: C 48.24, H 5.26, N 8.44%; found: C 48.20, H 5.38, N 8.62%.

Refinement

H atoms were initially located in difference maps, but were subsequently introduced in calculated positions and treated as riding, with C—H = 0.93, O—H = 0.85 and N—H = 0.86 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [$U_{iso}(H) = 1.2U_{eq}(C, N)$, or $1.5U_{eq}(O)$].

Figures

Fig. 1. The structure of the title compound with thermal ellipsoids drawn at the 30% probability level.

Fig. 2. The two dimensional layer structure formed by O—H…O hydrogen bonds (dashed lines) between the complex molecules and the water solvates. Fig. 3. Packing diagram for the title complex.

		ないとない		
Tabl. Secola	-04	en (l)	ed Institut	(m))
0040	1178	00.0	0.012	2490.0
0.0-90	1.00	00.0	0.40	21803
10-00-02*	10.1		10.000	0.000
03-00-00	12.00		0.0004	0.000
and one on	11.14		0.0014	A 10.000
102 -0800-000				· · · · · · · · · · · · · · · · · · ·
0.0-000-000	M (0)		theath-d	(* mm))
02,001400	10.11			
Synanticy Loke #		-J=1,-	-p+1 (8.5)	
Post-spectrum.	1	11	11-14-	0-01-A
11-12-14	11.00		10.00	14.1
01-00A-04		10	1000	
COLUMNS COM		1	-	
111-112 - 11 ²		1.000	1.000	111
114-1954 - 121		1.00	1.104(1)	
04-002-02*		1.00	2404(3)	107
C1-081A - CH				
and the second sec				
11.00% -11 ⁴				1.00
01.00%.00 ⁴⁶ 01.00%.00 ⁴⁶	1	1.0	1.00000	1.0
CALORIA COM CALORIA CA CALORIA COM CALORIA COM	100	1.0	2 2400 (1) 2 2400 (1) 2 400 (1)	10 10 (-1, B) - 1, -0, 3 - 0
(1.27%.07* (1.2%.02* (1.2%.02* (1.2%.02* (1.2%.02*	10 10 10 10 10	1.0	2100(1) 2100(2) 0(1)-1,-0	10 10 (+1,R+1,-p,3+1,

Tetraaquabis(4,4¹-bipyridine)cobalt(II) 2-aminonaphthalene-1-sulfonate hexahydrate

Crystal data

$[Co(C_{10}H_8N_2)_2(H_2O)_4](C_{10}H_8NO_3S)_2 \cdot 6H_2O$	$F_{000} = 1042$
$M_r = 995.93$	$D_{\rm x} = 1.450 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2ybc	Cell parameters from 3808 reflections
a = 12.4737 (14) Å	$\theta = 2.3 - 25.1^{\circ}$
b = 18.358 (2) Å	$\mu = 0.54 \text{ mm}^{-1}$
c = 10.9196 (13) Å	T = 293 (2) K
$\beta = 114.148 \ (1)^{\circ}$	Block, pale red
$V = 2281.7 (5) \text{ Å}^3$	$0.32\times0.28\times0.22~mm$
Z = 2	

Data collection

Bruker APEXII CCD area-detector diffractometer	4021 independent reflections
Radiation source: fine-focus sealed tube	3270 reflections with $I > 2\sigma(I)$

Monochromator: graphite	$R_{\rm int} = 0.019$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 12$
$T_{\min} = 0.840, \ T_{\max} = 0.887$	$k = -19 \rightarrow 21$
12190 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.109$	$w = 1/[\sigma^2(F_o^2) + (0.0583P)^2 + 1.0964P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
4021 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
295 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.5000	0.5000	0.5000	0.03414 (14)
S1	0.68106 (5)	0.61872 (4)	-0.02091 (6)	0.04513 (18)
01	0.44371 (14)	0.57897 (9)	0.34621 (16)	0.0459 (4)
H1A	0.4393	0.5695	0.2681	0.069*
H1B	0.4480	0.6239	0.3668	0.069*
O2	0.48301 (14)	0.57884 (10)	0.62652 (17)	0.0498 (4)
H2A	0.4184	0.5872	0.6326	0.075*
H2B	0.5442	0.5939	0.6919	0.075*
O3	0.7056 (2)	0.54311 (11)	0.0094 (2)	0.0897 (8)
O4	0.67303 (18)	0.63600 (12)	-0.15273 (18)	0.0664 (6)
O5	0.57611 (19)	0.64226 (16)	-0.0080 (3)	0.0948 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N1	0.31765 (16)	0.46586 (11)	0.44211 (19)	0.0387 (4)
N2	-0.27372 (18)	0.40516 (14)	0.3473 (2)	0.0551 (6)
N3	0.6869 (3)	0.73128 (17)	0.1974 (3)	0.0915 (10)
H3A	0.6234	0.7088	0.1481	0.110*
H3B	0.6862	0.7629	0.2551	0.110*
C1	0.1718 (2)	0.39321 (19)	0.4720 (4)	0.0805 (11)
H1	0.1558	0.3521	0.5115	0.097*
C2	0.2858 (2)	0.40909 (18)	0.4935 (4)	0.0777 (11)
H2	0.3444	0.3777	0.5479	0.093*
C3	0.2301 (2)	0.50586 (18)	0.3617 (3)	0.0679 (9)
H3	0.2479	0.5451	0.3193	0.081*
C4	0.1139 (2)	0.49405 (18)	0.3355 (3)	0.0661 (9)
H4	0.0567	0.5251	0.2777	0.079*
C5	0.08187 (19)	0.43739 (13)	0.3932 (2)	0.0378 (5)
C6	-0.04222 (19)	0.42505 (13)	0.3733 (2)	0.0388 (5)
C7	-0.1325 (2)	0.4684 (2)	0.2911 (3)	0.0686 (9)
H7	-0.1181	0.5056	0.2421	0.082*
C8	-0.2450 (2)	0.4563 (2)	0.2816 (3)	0.0740 (10)
H8	-0.3046	0.4865	0.2250	0.089*
C9	-0.1865 (3)	0.36315 (18)	0.4241 (4)	0.0726 (9)
Н9	-0.2035	0.3259	0.4711	0.087*
C10	-0.0719 (2)	0.37078 (16)	0.4394 (4)	0.0661 (9)
H10	-0.0146	0.3389	0.4948	0.079*
C11	0.8024 (2)	0.66754 (12)	0.0958 (2)	0.0384 (5)
C12	0.9161 (2)	0.65456 (12)	0.0952 (2)	0.0389 (5)
C13	0.9385 (2)	0.60407 (14)	0.0116 (3)	0.0482 (6)
H13	0.8773	0.5756	-0.0468	0.058*
C14	1.0489 (3)	0.59610 (18)	0.0148 (3)	0.0685 (9)
H14	1.0611	0.5625	-0.0421	0.082*
C15	1.1428 (3)	0.6372 (2)	0.1010 (4)	0.0785 (11)
H15	1.2172	0.6313	0.1020	0.094*
C16	1.1250 (3)	0.6855 (2)	0.1833 (4)	0.0723 (10)
H16	1.1880	0.7130	0.2413	0.087*
C17	1.0133 (2)	0.69561 (15)	0.1836 (3)	0.0525 (7)
C18	0.9945 (3)	0.74661 (16)	0.2700 (3)	0.0676 (9)
H18	1.0575	0.7742	0.3277	0.081*
C19	0.8892 (3)	0.75618 (16)	0.2710 (3)	0.0695 (9)
H19	0.8811	0.7897	0.3304	0.083*
C20	0.7885 (3)	0.71681 (15)	0.1840 (3)	0.0544 (7)
O6	0.4298 (2)	0.57428 (12)	0.0930 (2)	0.0804 (7)
H6A	0.4992	0.5625	0.1042	0.121*
H6B	0.3781	0.5419	0.0552	0.121*
O7	0.4464 (2)	0.73225 (13)	0.3298 (3)	0.0924 (8)
H7A	0.4282	0.7334	0.2458	0.139*
H7B	0.5077	0.7554	0.3798	0.139*
08	0.3637 (3)	0.72911 (17)	0.0418 (3)	0.1175 (11)
H8A	0.3643	0.6869	0.0100	0.176*
H8B	0.4063	0.7611	0.0272	0.176*

Atomic displacement parameters	(A^2))

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0231 (2)	0.0467 (3)	0.0319 (2)	-0.00243 (18)	0.01052 (17)	-0.00211 (18)
S1	0.0398 (3)	0.0500 (4)	0.0410 (3)	-0.0111 (3)	0.0118 (3)	0.0024 (3)
01	0.0433 (10)	0.0538 (10)	0.0381 (9)	-0.0024 (8)	0.0142 (8)	0.0024 (7)
O2	0.0274 (8)	0.0727 (12)	0.0491 (10)	-0.0074 (8)	0.0156 (7)	-0.0223 (9)
O3	0.0922 (17)	0.0486 (12)	0.0858 (16)	-0.0270 (12)	-0.0068 (13)	0.0134 (11)
O4	0.0602 (12)	0.0839 (14)	0.0397 (10)	-0.0284 (11)	0.0045 (9)	0.0050 (9)
O5	0.0512 (13)	0.140 (2)	0.0998 (18)	-0.0185 (14)	0.0372 (13)	-0.0230 (17)
N1	0.0286 (10)	0.0476 (12)	0.0395 (10)	-0.0019 (9)	0.0137 (8)	-0.0020 (9)
N2	0.0327 (12)	0.0803 (16)	0.0553 (13)	-0.0074 (11)	0.0210 (10)	-0.0121 (12)
N3	0.088 (2)	0.096 (2)	0.108 (2)	0.0034 (17)	0.0578 (19)	-0.0365 (19)
C1	0.0311 (14)	0.081 (2)	0.118 (3)	0.0009 (14)	0.0194 (16)	0.052 (2)
C2	0.0289 (14)	0.073 (2)	0.119 (3)	0.0047 (14)	0.0177 (16)	0.042 (2)
C3	0.0308 (14)	0.094 (2)	0.0695 (19)	-0.0048 (14)	0.0112 (13)	0.0424 (17)
C4	0.0277 (13)	0.088 (2)	0.0715 (19)	0.0032 (13)	0.0088 (13)	0.0391 (17)
C5	0.0274 (11)	0.0475 (13)	0.0384 (12)	-0.0032 (10)	0.0134 (10)	-0.0062 (10)
C6	0.0286 (11)	0.0496 (14)	0.0386 (12)	-0.0023 (10)	0.0141 (10)	-0.0088 (10)
C7	0.0346 (14)	0.116 (3)	0.0572 (17)	0.0102 (16)	0.0207 (13)	0.0350 (18)
C8	0.0301 (14)	0.134 (3)	0.0538 (17)	0.0148 (17)	0.0131 (13)	0.0266 (19)
C9	0.0471 (17)	0.0645 (19)	0.119 (3)	-0.0043 (15)	0.0465 (19)	0.0164 (19)
C10	0.0398 (15)	0.0577 (17)	0.106 (2)	0.0045 (13)	0.0355 (16)	0.0215 (17)
C11	0.0403 (13)	0.0358 (12)	0.0348 (12)	-0.0024 (10)	0.0110 (10)	0.0018 (10)
C12	0.0398 (13)	0.0364 (12)	0.0350 (12)	-0.0005 (10)	0.0095 (10)	0.0108 (10)
C13	0.0502 (15)	0.0450 (14)	0.0478 (14)	0.0072 (12)	0.0186 (12)	0.0082 (11)
C14	0.072 (2)	0.072 (2)	0.073 (2)	0.0298 (18)	0.0413 (18)	0.0262 (17)
C15	0.0443 (18)	0.097 (3)	0.096 (3)	0.0162 (18)	0.0308 (19)	0.047 (2)
C16	0.0393 (16)	0.081 (2)	0.079 (2)	-0.0086 (15)	0.0064 (15)	0.0287 (19)
C17	0.0467 (16)	0.0482 (15)	0.0477 (14)	-0.0069 (12)	0.0043 (12)	0.0140 (12)
C18	0.073 (2)	0.0526 (18)	0.0506 (16)	-0.0213 (15)	-0.0014 (15)	-0.0064 (14)
C19	0.093 (3)	0.0526 (18)	0.0548 (17)	-0.0071 (17)	0.0224 (17)	-0.0175 (14)
C20	0.0661 (18)	0.0461 (15)	0.0519 (15)	0.0029 (13)	0.0252 (14)	-0.0023 (12)
O6	0.1082 (18)	0.0777 (15)	0.0730 (14)	-0.0410 (13)	0.0551 (14)	-0.0252 (12)
07	0.1018 (19)	0.0765 (16)	0.1005 (19)	-0.0156 (14)	0.0430 (16)	-0.0103 (14)
O8	0.127 (3)	0.102 (2)	0.161 (3)	0.0241 (18)	0.098 (2)	0.018 (2)

Geometric parameters (Å, °)

Co1—O2 ⁱ	2.0708 (16)	C6—C7	1.371 (4)
Co1—O2	2.0708 (16)	С7—С8	1.382 (4)
Co1—O1 ⁱ	2.1096 (16)	С7—Н7	0.9300
Co1—O1	2.1096 (16)	C8—H8	0.9300
Co1—N1 ⁱ	2.1885 (18)	C9—C10	1.377 (4)
Co1—N1	2.1885 (18)	С9—Н9	0.9300
S1—O3	1.431 (2)	C10—H10	0.9300
S1—O4	1.4369 (19)	C11—C20	1.383 (3)

S1—O5	1.439 (2)	C11—C12	1.441 (3)
S1—C11	1.772 (2)	C12—C13	1.406 (4)
O1—H1A	0.8499	C12—C17	1.419 (3)
O1—H1B	0.8500	C13—C14	1.372 (4)
O2—H2A	0.8501	C13—H13	0.9300
O2—H2B	0.8500	C14—C15	1.387 (5)
N1—C3	1.311 (3)	C14—H14	0.9300
N1—C2	1.320 (3)	C15—C16	1.345 (5)
N2—C9	1.317 (4)	C15—H15	0.9300
N2—C8	1.318 (4)	C16—C17	1.406 (4)
N3—C20	1.360 (4)	C16—H16	0.9300
N3—H3A	0.8600	C17—C18	1.416 (4)
N3—H3B	0.8600	C18—C19	1.329 (5)
C1—C5	1.367 (4)	C18—H18	0.9300
C1—C2	1.374 (4)	C19—C20	1.424 (4)
C1—H1	0.9300	С19—Н19	0.9300
С2—Н2	0.9300	О6—Н6А	0.8505
C3—C4	1.375 (4)	O6—H6B	0.8502
С3—Н3	0.9300	O7—H7A	0.8501
C4—C5	1.358 (4)	O7—H7B	0.8500
C4—H4	0.9300	O8—H8A	0.8501
C5—C6	1.490 (3)	O8—H8B	0.8501
C6—C10	1.368 (4)		
O2 ⁱ —Co1—O2	180.0	C10—C6—C7	116.2 (2)
O2 ⁱ —Co1—O1 ⁱ	87.66 (7)	C10—C6—C5	121.6 (2)
O2—Co1—O1 ⁱ	92.34 (7)	C7—C6—C5	122.2 (2)
O2 ⁱ —Co1—O1	92.34 (7)	C6—C7—C8	119.6 (3)
O2—Co1—O1	87.66 (7)	С6—С7—Н7	120.2
O1 ⁱ —Co1—O1	180.0	С8—С7—Н7	120.2
O2 ⁱ —Co1—N1 ⁱ	90.85 (7)	N2—C8—C7	124.6 (3)
O2—Co1—N1 ⁱ	89.15 (7)	N2—C8—H8	117.7
O1 ⁱ —Co1—N1 ⁱ	89.93 (7)	С7—С8—Н8	117.7
O1—Co1—N1 ⁱ	90.07 (7)	N2—C9—C10	124.3 (3)
O2 ⁱ —Co1—N1	89.15 (7)	N2—C9—H9	117.9
O2—Co1—N1	90.85 (7)	С10—С9—Н9	117.9
O1 ⁱ —Co1—N1	90.07 (7)	C6—C10—C9	120.2 (3)
O1—Co1—N1	89.93 (7)	С6—С10—Н10	119.9
N1 ⁱ —Co1—N1	180.00 (11)	С9—С10—Н10	119.9
O3—S1—O4	111.52 (15)	C20-C11-C12	121.0 (2)
O3—S1—O5	112.69 (17)	C20—C11—S1	121.2 (2)
O4—S1—O5	109.78 (15)	C12—C11—S1	117.77 (17)
O3—S1—C11	106.57 (12)	C13—C12—C17	116.8 (2)
O4—S1—C11	107.32 (11)	C13—C12—C11	124.6 (2)
O5—S1—C11	108.73 (13)	C17—C12—C11	118.6 (2)
Co1—O1—H1A	121.5	C14—C13—C12	121.2 (3)
Co1—O1—H1B	119.4	C14—C13—H13	119.4

H1A—O1—H1B	115.7	C12—C13—H13	119.4
Co1—O2—H2A	122.6	C13—C14—C15	121.3 (3)
Co1—O2—H2B	119.1	C13—C14—H14	119.4
H2A—O2—H2B	115.5	C15—C14—H14	119.4
C3—N1—C2	114.4 (2)	C16—C15—C14	119.2 (3)
C3—N1—Co1	121.05 (17)	С16—С15—Н15	120.4
C2—N1—Co1	124.17 (17)	C14—C15—H15	120.4
C9—N2—C8	115.3 (2)	C15—C16—C17	121.5 (3)
C20—N3—H3A	120.0	С15—С16—Н16	119.2
C20—N3—H3B	120.0	С17—С16—Н16	119.2
H3A—N3—H3B	120.0	C16—C17—C18	121.5 (3)
C5—C1—C2	120.5 (3)	C16—C17—C12	120.0 (3)
C5—C1—H1	119.8	C18—C17—C12	118.4 (3)
C2—C1—H1	119.8	C19—C18—C17	121.8 (3)
N1—C2—C1	124.4 (3)	С19—С18—Н18	119.1
N1—C2—H2	117.8	С17—С18—Н18	119.1
C1—C2—H2	117.8	C18—C19—C20	122.2 (3)
N1—C3—C4	124.7 (2)	С18—С19—Н19	118.9
N1—C3—H3	117.6	С20—С19—Н19	118.9
C4—C3—H3	117.6	N3-C20-C11	126.2 (3)
C5-C4-C3	120.6 (2)	N3—C20—C19	115.8 (3)
C5—C4—H4	119.7	C11—C20—C19	118.0 (3)
C3—C4—H4	119.7	Н6А—О6—Н6В	114.7
C4-C5-C1	115 2 (2)	H7A—07—H7B	116.9
C4C5C6	122.3(2)	H8A—08—H8B	116.3
C1 - C5 - C6	122.5(2) 122.5(2)		110.0
	10(1(0)		0.5 (0)
O2 ¹ —Co1—N1—C3	-106.1 (2)	N2-C9-C10-C6	0.5 (6)
O2—Co1—N1—C3	73.9 (2)	O3—S1—C11—C20	-119.3 (2)
O1 ⁱ —Co1—N1—C3	166.3 (2)	O4—S1—C11—C20	121.1 (2)
O1—Co1—N1—C3	-13.7 (2)	O5—S1—C11—C20	2.4 (3)
N1 ⁱ —Co1—N1—C3	94 (100)	O3—S1—C11—C12	61.1 (2)
O2 ⁱ —Co1—N1—C2	81.0 (3)	O4—S1—C11—C12	-58.5 (2)
O2—Co1—N1—C2	-99.0 (3)	O5—S1—C11—C12	-177.19 (19)
O1 ⁱ —Co1—N1—C2	-6.7 (3)	C20-C11-C12-C13	178.2 (2)
O1—Co1—N1—C2	173.3 (3)	S1—C11—C12—C13	-2.2 (3)
N1 ⁱ —Co1—N1—C2	-79 (100)	C20-C11-C12-C17	-2.5 (3)
C3—N1—C2—C1	-2.9 (5)	S1-C11-C12-C17	177.12 (17)
Co1—N1—C2—C1	170.4 (3)	C17—C12—C13—C14	-1.0 (3)
C5-C1-C2-N1	-0.1 (6)	C11—C12—C13—C14	178.4 (2)
C2—N1—C3—C4	3.3 (5)	C12-C13-C14-C15	0.4 (4)
Co1—N1—C3—C4	-170.3 (3)	C13—C14—C15—C16	0.2 (5)
N1—C3—C4—C5	-0.6 (6)	C14—C15—C16—C17	-0.2 (5)
C3—C4—C5—C1	-2.5 (5)	C15-C16-C17-C18	-179.9 (3)
C3—C4—C5—C6	176.6 (3)	C15-C16-C17-C12	-0.4 (4)
C2—C1—C5—C4	2.8 (5)	C13—C12—C17—C16	0.9 (3)
C2—C1—C5—C6	-176.3 (3)	C11—C12—C17—C16	-178.5 (2)
C4—C5—C6—C10	-175.4 (3)	C13—C12—C17—C18	-179.5 (2)

C1C5C6C10	3.7 (4)	C11—C12—C17—C18	1.1 (3)
C4—C5—C6—C7	2.7 (4)	C16-C17-C18-C19	-179.8 (3)
C1—C5—C6—C7	-178.2 (3)	C12-C17-C18-C19	0.7 (4)
C10—C6—C7—C8	1.3 (5)	C17—C18—C19—C20	-1.0 (5)
C5—C6—C7—C8	-176.9 (3)	C12-C11-C20-N3	-177.1 (3)
C9—N2—C8—C7	-1.3 (5)	S1-C11-C20-N3	3.3 (4)
C6—C7—C8—N2	0.2 (6)	C12-C11-C20-C19	2.1 (4)
C8—N2—C9—C10	0.9 (5)	S1-C11-C20-C19	-177.4 (2)
C7—C6—C10—C9	-1.6 (5)	C18—C19—C20—N3	179.0 (3)
C5—C6—C10—C9	176.6 (3)	C18—C19—C20—C11	-0.4 (4)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01—H1A…O6	0.85	1.87	2.700 (3)	166
O1—H1B…O7	0.85	2.03	2.821 (3)	155
O2—H2A···N2 ⁱⁱ	0.85	1.91	2.756 (3)	174
O2—H2B···O4 ⁱⁱⁱ	0.85	1.96	2.803 (2)	173
O2—H2B…S1 ⁱⁱⁱ	0.85	2.93	3.6985 (18)	152
N3—H3A…O5	0.86	1.98	2.660 (4)	135
N3—H3B···O4 ^{iv}	0.86	2.15	2.980 (3)	162
O6—H6A…O5	0.85	2.35	2.784 (3)	112
O6—H6B···O3 ^v	0.85	1.85	2.684 (3)	167
O6—H6B···S1 ^v	0.85	3.03	3.768 (2)	147
O7—H7A…O8	0.85	2.04	2.881 (5)	172
O7—H7B···O5 ^{iv}	0.85	2.21	2.953 (4)	145
O8—H8A…O6	0.85	2.27	2.949 (4)	137
O8—H8B···O7 ^{vi}	0.85	2.41	2.980 (4)	125

Symmetry codes: (ii) -x, -y+1, -z+1; (iii) x, y, z+1; (iv) x, -y+3/2, z+1/2; (v) -x+1, -y+1, -z; (vi) x, -y+3/2, z-1/2.

Fig. 4

 $Table \, 1. \, \text{Selected B ond Distances} \, (\text{\r{A}}) \, \text{and B ond Angles} \, (^\circ)$

Co(1)-O(2)	2.0708(16)	Co(1)-O(2)#1	2.0708(16)
Co(1)-N(1)	2.1885(18)	Co(1)-O(1)	2.1096(16)
O(2)-Co(1)-O(2)#1	180.0	N(1)#1-Co(1)-N(1)	180.00(11)
O(2)-Co(1)-O(1)	87.66(7)	O(1)-Co(1)-N(1)	89.93(7)
O(2)#1-Co(1)-O(1)	92.34(7)	O(1)-Co(1)-N(1)#1	90.07(7)
O(2)-Co(1)-N(1)	90.85(7)	O(1)-Co(1)-O(1)#1	180.00(7)
O(2)#1-Co(1)-N(1)	89.15(7)		

Symmetry Codes: #1 - x + 1, -y + 1, -z + 1

Fig. 5

Table 2. Hydrogen-bonding geometry(Å ,°)

Hydrogen bonds	D-H	$H \cdots A$	D…A	$D-H \cdots A$
N3-H3BO4#1	0.86	2.15	2.979(4)	162
01–H1A…O6 ^{#2}	0.85	1.87	2.700(3)	166
01-H1B…07#2	0.85	2.03	2.821(3)	155
02–H2A…N2 ^{#3}	0.85	1.91	2.756(3)	173
02–H2B…O4#4	0.85	1.96	2.803(3)	173
06-H6A05	0.85	2.35	2.784(4)	112
O6-H6BO3 ^{#2}	0.85	1.85	2.684(3)	167
07-H7A08	0.85	2.04	2.882(5)	172
07–H7B…O5 ^{#1}	0.85	2.21	2.953(4)	145
08–H8A…06	0.85	2.27	2.949(4)	137
08–H8B…07 ^{#5}	0.85	2.41	2.980(5)	125

Symmetry codes: #1 x, 1/2 - y, -1/2 + z; #2 1 - x, -y, 1 - z; #3 - x, -y, 2 - z; #4 1 - x, -y, 2 - z; #5 x, 1/2 - y, 1/2 + z.